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S1-actions on highly connected manifolds
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Abstract

We use the theory of elliptic genera to exhibit new obstructions to smooth non-trivial S1-actions on
highly connected manifolds.
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1. Introduction

Let M be a smooth closed connected Spin-manifold. A celebrated theorem of Atiyah and
Hirzebruch [1] asserts that the index of the Dirac operator on M , the Â-genus, vanishes if
M admits a smooth non-trivial S1-action. Here smoothness of the action is necessary since
there exist examples of topological S1-actions on Spin-manifolds with non-zero Â-genus (cf.
[4, p. 352], and [5]).

In this note we use the elliptic genus to show that additional obstructions exist if one restricts
to highly connected manifolds. We recall that the elliptic genus is a bordism invariant which
assigns to M a modular function Φ(M) for Γ0(2). In one of the cusps of Γ0(2) this modular
function expands as a series of twisted signatures which, as explained by Witten [13], describes
the “signature” of the free loop space LM of M localized at the constant loops. In a different
cusp Φ(M) expands as a series of indices of twisted Dirac operators

Φ0(M) = q−
dim M

8 · ( Â(M) − Â(M, T M) · q + Â(M,Λ2T M + T M) · q2
+ . . .).

Here Â(M, E) denotes the index of the Dirac operator twisted with E ⊗ C.
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The main feature of the elliptic genus is its rigidity under S1-actions conjectured by Witten
and proved by Taubes and by Bott and Taubes (see [3] and references therein). In [9] Hirzebruch
and Slodowy used the rigidity theorem to show that the coefficients of Φ0(M) define obstructions
to actions by involutions with large fixed point codimension.

In this note we show that their approach can also be used to define obstructions to the existence
of S1-actions on highly connected manifolds.

Theorem 1.1. Let M be a k-connected manifold, k ≥ 4r > 0. If M admits a smooth non-trivial
S1-action then the first (r + 1) coefficients of Φ0(M) vanish.

The note is structured in the following way. In the next section we review relevant properties
of the elliptic genus. In Section 3 we prove a slightly more general version of Theorem 1.1. In
the final section we show by example that Theorem 1.1 is independent of the vanishing theorem
for the Witten genus [12,6].

2. Elliptic genera

In this section we review relevant properties of the elliptic genus (for more information see
[11,8]). The elliptic genus of M is a modular function Φ(M) of weight 0 with Z2-character for

Γ0(2) :=

{
A ∈ SL2(Z) | A ≡

(
∗ ∗

0 ∗

)
mod 2

}
.

In one of the cusps (the signature cusp) Φ(M) expands as a series of twisted signatures

sign(q,LM) := sign

(
M,

∞⊗
n=1

Sqn T M ⊗

∞⊗
n=1

Λqn T M

)
= sign(M) + 2 · sign(M, T M) · q + . . . =

∑
n≥0

sign(M, En)qn
∈ Z[[q]].

Here Λt :=
∑

i Λi
· t i (resp. St :=

∑
i Si

· t i ) denotes the exterior (resp. symmetric)
power operation and sign(M, E) denotes the index of the signature operator twisted with the
complexification E ⊗C. Note that each En is a virtual complex vector bundle associated to T M .

Now assume S1 acts smoothly on M . Then the twisted signatures occurring in sign(q,LM)

refine to virtual S1-representations and the expansion refines to a series signS1(q,LM) ∈

R(S1)[[q]], where R(S1) in the complex representation ring for S1.
The rigidity theorem (see [3] and references therein) asserts that the elliptic genus is rigid, i.e.

each coefficient of signS1(q,LM) is constant as a character of S1.
In a different cusp (the Â-cusp) Φ(M) expands as the following series of indices of twisted

Dirac operators:

Φ0(M) := q−
dim M

8 · Â

(
M,

⊗
n=2m+1>0

Λ−qn T M ⊗

⊗
n=2m>0

Sqn T M

)
= q−

dim M
8 · ( Â(M) − Â(M, T M) · q + Â(M,Λ2T M + T M) · q2

+ . . .).

As in [9] we will study the equivariant expansion signS1(q,LM) evaluated at the involution
σ ∈ S1. Theorem 1.1 will follow from this and a “change of cusps” argument.
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3. Proof of Theorem 1.1

Let M be a smooth closed connected Spin-manifold with smooth non-trivial S1-action and let
σ ∈ S1 denote the element of order two. As in [9] we will study the equivariant elliptic genus
signS1(q,LM) at σ via the Lefschetz fixed point formula [2].

Let signS1(M, E) be an equivariant twisted signature occurring as a coefficient in
signS1(q,LM). Using the Lefschetz fixed point formula the complex number signS1(M, E)(σ )

obtained by evaluating signS1(M, E) at σ can be expressed as a sum of local data aF,E at the
connected components F of the fixed point manifold Mσ

:= {p ∈ M | σ(p) = p}

signS1(M, E)(σ ) =

∑
F

aF,E .

It is well known that the fixed point manifold Mσ is orientable (see for example [3, Lemma 10.1],
and references therein). We fix an orientation for each connected component F ⊂ Mσ .

To describe the local datum aF,E consider the cohomology class AF,E ∈ H∗(F; Q) defined
by the following expression:

∏
i

(
xi ·

1 + e−xi

1 − e−xi

)
·

∏
j

(
y j ·

1 + e−y j

1 − e−y j

)−1

· ch(E|F )(σ ) · e(νF ). (1)

Here ±xi (resp. ±y j ) denote the formal roots of F (resp. of the normal bundle νF of F) for
compatible orientations of F and νF , e(νF ) is the Euler class of νF and ch(E|F ) denotes the
equivariant Chern character of E restricted to F .

Then the local datum aF,E is obtained by evaluating the cohomology class AF,E on the
fundamental cycle [F]

aF,E = 〈AF,E , [F]〉.

Lemma 3.1. Let M and E be as above. If H k(M; Q) = 0 then aF,E vanishes for any connected
component F ⊂ Mσ of codimension k.

Proof. Recall that the Euler class of the normal bundle of i : F ↪→ M is equal to i∗(i!(1)),
where i! : H∗(F; Z) → H∗+k(M; Z) denotes the push forward (or Gysin homomorphism)
in cohomology for the oriented normal bundle νF . Since H k(M; Q) = 0 we see that e(νF )

is a torsion class. Hence, AF,E = 0 since it contains the Euler class e(νF ) as a factor (see
Eq. (1)). �

We shall now apply this observation to prove the following generalization of Theorem 1.1.

Theorem 3.2. Let M be a Spin-manifold with H4∗(M; Q) = 0 for 0 < ∗ ≤ r . If M admits a
smooth non-trivial S1-action then the first (r + 1) coefficients of Φ(M) vanish.

Proof. Dividing out the kernel of the action we may assume that S1 acts effectively. We may
also assume that the dimension of M is divisible by 4. Let σ ∈ S1 denote the element of order
two. Recall that the S1-action is called even if it lifts to the Spin-structure and odd otherwise. In
the even case the codimension of all connected components of Mσ is divisible by 4 whereas in
the odd case the codimensions are always ≡ 2 mod 4 (cf. [1, Lemma 2.4]). It is well known (see
for example [9, p. 317]) that the elliptic genus vanishes for odd actions. So it suffices to restrict



2234 A. Dessai / Journal of Geometry and Physics 56 (2006) 2231–2236

to the case where the dimension (and codimension) of each connected component F ⊂ Mσ is
divisible by 4.

Consider the expansion signS1(q,LM) of the S1-equivariant elliptic genus in the signature
cusp. The rigidity theorem [3] tells us that signS1(q,LM)(σ ) is equal to the non-equivariant
expansion sign(q,LM). By the Lefschetz fixed point formula signS1(q,LM)(σ ) is a sum of
local contributions aF at the connected components F of Mσ :

sign(q,LM) = signS1(q,LM)(σ ) =

∑
F

aF ,

where aF =
∑

n≥0 aF,En · qn .
Recall that each coefficient of the q-power series aF is the local contribution in the Lefschetz

fixed point formula of an equivariant twisted signature evaluated at σ ∈ S1. Since H4∗(M; Q) =

0 for 0 < ∗ ≤ r the contribution aF vanishes if codim F ≤ 4r by Lemma 3.1. Hence,

sign(q,LM) =

∑
codim F>4r

aF .

As explained in [9] aF can be identified with sign(q,L(F ◦ F)), where F ◦ F denotes the
transversal self-intersection (which is canonically oriented and unique up to oriented bordism).
Hence,

sign(q,LM) =

∑
codim F◦F>8r

sign(q,L(F ◦ F)).

Changing cusps one obtains

Φ0(M) =

∑
codim F◦F>8r

Φ0(F ◦ F). (2)

Note that each summand

Φ0(F ◦ F) = q−
dim(F◦F)

8 · ( Â(F ◦ F) − Â(F ◦ F, T (F ◦ F)) · q + . . .)

of the right hand side of (2) has a pole of order ≤
dim(F◦F)

8 < dim M
8 − r . Comparing with the

expansion on the left hand side

Φ0(M) = q−
dim M

8 · ( Â(M) − Â(M, T M) · q + . . .)

it follows that the first (r + 1) coefficients of Φ0(M) vanish. �

Remark 3.3. Herrera and Herrera [7] have shown that the rigidity theorem also holds for
manifolds with finite second homotopy group. Combining their result with the above argument
shows that Theorem 3.2 remains true if one replaces the Spin-condition by the condition that the
second homotopy group is finite.

4. Comparison with the Witten genus

In this section we show by example that for 8-connected manifolds Theorem 1.1 does not
follow from the vanishing theorem for the Witten genus [12,6].

Let M be an 4k-dimensional Spin-manifold with p1
2 (M) = 0. In [13] Witten introduced a

genus, the so-called Witten genus, which is best thought of as the index of a hypothetical Dirac
operator on the free loop space of M . The Witten genus is a bordism invariant which assigns to M
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a modular form ϕW (M) of weight 2k for SL2(Z) which we shall identify with its q-expansion.
The latter can be described by the following series of indices of twisted Dirac operators:

ϕW (M) = Â

(
M,

∞⊗
n=1

Sqn T M

)
· Ck

= ( Â(M) + Â(M, T M) · q + Â(M, S2T M + T M) · q2
+ . . .) · Ck .

Here Ck := q−
4k
24 · η4k and η = q1/24

·
∏

∞

n=1(1 − qn) is the Dedekind eta function.
It follows from [12] that the Witten genus vanishes on 4-connected manifolds with non-trivial

smooth S1-action (see [6] for related results). Applying this to the first two coefficients of the
Witten genus we see that for any 4-connected manifold M with smooth non-trivial S1-action
Â(M) and Â(M, T M) must vanish.

Hence, the statement of Theorem 1.1 for 4-connected manifolds also follows from the
vanishing theorem for the Witten genus. For 8-connected manifolds the situation changes as
shown by the following.

Example 4.1. There is an 8-connected 28-dimensional manifold M with ϕW (M) = 0 but
Â(M,Λ2T M + T M) 6= 0.

Remarks 4.2. 1. By Theorem 1.1 M does not admit a smooth non-trivial S1-action.
2. The dimension is the smallest possible since any 8-connected manifold of dimension <28

with vanishing Witten genus is rationally zero bordant.

Outline of the construction of the example: The example will be obtained by applying surgery
to a suitable combination of almost parallelizable manifolds. Let N4k be a smooth closed almost
parallelizable manifold with Â(N4k) = −αk · num(

B2k
4k ), where B2k is the (2k)th Bernoulli

number, num( ) denotes the numerator and αk is one or two according as k is even or odd.
Such manifolds which can be constructed via plumbing were considered by Kervaire and Milnor
[10] (see [8, Section 6.4–6.5], for more details).

Let M ′ be the connected sum of N28 and −(N16 × N12), where the sign denotes opposite
orientation. Since N4k is almost parallelizable the stable normal bundle of M ′ is trivial over the
8-skeleton. Hence, we can use surgery to change M ′ inside its bordism class to an 8-connected
manifold denoted by M .

To compute the Witten genus of M we first recall that for an almost parallelizable 4k-
dimensional manifold the Witten genus is equal to the Â-genus times the Eisenstein series E2k
(see [8, p. 89]). The first few terms of ϕW (N4k) are given in the following table.

2k num(
B2k
4k ) E2k ϕW (N4k )

6 +1 1 − 504q − . . . −2 + 1008q − . . .

8 −1 1 + 480q + . . . +1 + 480q − . . .

14 +1 1 − 24q − . . . −2 + 48q − . . .

Next we recall that the ring of modular forms of SL2(Z) is a polynomial ring generated by
E4 and E6. This implies that a modular form of weight 14 vanishes if and only if its expansion
has vanishing constant term. From the data above one computes that ϕW (M) = 0.

We now turn to the computation of the elliptic genus of M . The characteristic power series
Q(x) = x/ f (x) of the elliptic genus Φ satisfies the differential equation f ′2

= 1−2 δ
√

ε
· f 2

+ f 4,
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where δ and ε are modular forms for Γ0(2) of weight 2 and 4, respectively (see [8, Appendix I],
for details). Note that the differential equation together with the normalization f (x) = x +O(x3)

determines the odd power series f (x) as well as Q(x) and Φ.
For an almost parallelizable 4k-dimensional manifold X the elliptic genus Φ(X) is equal to a

constant sk times the Pontrjagin number 〈pk(X), [X ]〉, where the sk can be calculated from the
characteristic power series using a formula of Cauchy:

1 − z
d
dz

log Q(z) =

∞∑
j=0

(−1) j s j · z j .

The Pontrjagin number 〈pk(X), [X ]〉 can be computed from Â(X). Applying this information
to the almost parallelizable manifolds N4k one can compute Φ(M) as a polynomial in δ

√
ε
. To

compute the expansion Φ0(N4k) of Φ(N4k) in the Â-cusp one only has to replace δ
√

ε
by its

expansion in this cusp (again we refer the reader to [8, Appendix I]) for details). Doing the
computation one obtains the following expansion for Φ0(M) = Φ0(N28) − Φ0(N16) · Φ0(N12):

Φ0(M) := q−
28
8 · ( Â(M) − Â(M, T M) · q + Â(M,Λ2T M + T M) · q2

+ . . .)

= q−
28
8 · (−967 680 · q2

− 127 733 760 · q3
+ . . .)

Hence, Â(M,Λ2T M + T M) 6= 0.
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